Evaluation of (unstable) Non-causal Systems Applied to Iterative Learning Control

نویسندگان

  • M.G.E. Schneiders
  • M. Steinbuch
چکیده

This paper presents a new approach towards the design of iterative learning control (Moore, 1993). In linear motion control systems the design is often complicated by the inverse plant sensitivity being non-causal and even unstable. To overcome these problems the inverse system is split up in a causal and a non-causal part. We apply high-performance differentiating filters together with a mixed boundary value ODE solver to compute the control signal. This allows for an accurate approximation of the theoretical solution and offers the advantage of control over the boundary conditions of the learnt signal. The advantages of this approach over the existing commonly-used ZPETC technique are demonstrated by two examples, respectively a non-minimum-phase system and an industrial H-drive.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterative learning identification and control for dynamic systems described by NARMAX model

A new iterative learning controller is proposed for a general unknown discrete time-varying nonlinear non-affine system represented by NARMAX (Nonlinear Autoregressive Moving Average with eXogenous inputs) model. The proposed controller is composed of an iterative learning neural identifier and an iterative learning controller. Iterative learning control and iterative learning identification ar...

متن کامل

Perfect Tracking of Supercavitating Non-minimum Phase Vehicles Using a New Robust and Adaptive Parameter-optimal Iterative Learning Control

In this manuscript, a new method is proposed to provide a perfect tracking of the supercavitation system based on a new two-state model. The tracking of the pitch rate and angle of attack for fin and cavitator input is of the aim. The pitch rate of the supercavitation with respect to fin angle is found as a non-minimum phase behavior. This effect reduces the speed of command pitch rate. Control...

متن کامل

Bilateral Teleoperation Systems Using Backtracking Search optimization Algorithm Based Iterative Learning Control

This paper deals with the application of Iterative Learning Control (ILC) to further improve the performance of teleoperation systems based on Smith predictor. The goal is to achieve robust stability and optimal transparency for these systems. The proposed control structure make the slave manipulator follow the master in spite of uncertainties in time delay in communication channel and model pa...

متن کامل

NEW CRITERIA FOR RULE SELECTION IN FUZZY LEARNING CLASSIFIER SYSTEMS

Designing an effective criterion for selecting the best rule is a major problem in theprocess of implementing Fuzzy Learning Classifier (FLC) systems. Conventionally confidenceand support or combined measures of these are used as criteria for fuzzy rule evaluation. In thispaper new entities namely precision and recall from the field of Information Retrieval (IR)systems is adapted as alternative...

متن کامل

Design, implementation and evaluation of an optimal iterative learning control algorithm

Iterative learning control (ILC) is used to control systems that operate in a repetitive mode, improving tracking accuracy of the control by transferring data from one repetition of a task, to the next. In this paper an optimal iterative learning algorithm for discrete linear systems is designed and implemented. The design and implementation that have been done using Matlab® 7 and Simulink are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005